Duplicated genes producing transposable controlling elements for the mating-type differentiation in Saccharomyces cerevisiae.

نویسندگان

  • T Oshima
  • I Takano
چکیده

Mutation of the two homothallic genes, HML alpha/HMLa and HMRa/HMR alpha, in homothallic strains of Saccharomyces cerevisiae was studied. Of 11 mutants of the HML alpha gene, eight were due to a phenotypic mutation from HML alpha to HMLa, i.e., a mutation causing a change in function of the original HML allele to that of the other HML allele (functional mutation), and three were due to a defective mutation at the HML alpha gene, i.e., a mutation causing a nonfunctional allele (nonfunctional mutation). All 14 mutants of the HMRa gene, on the other hand, were due to a phenotypic mutation from HMRa to HMR alpha i.e., a functional mutation. Phenotypic reverse mutations, i.e., HMLa to HML alpha and HMR alpha to HMRa, were also observed in the cultivation of EMS (ethyl methanesulfonate) treated spores having the HO HMR alpha HMLa genotype. Mutation from heterothallic cells to homothallism was observed in a nonfunctional mutant of the HML alpha gene, by mutagenesis with EMS, but not in the functional mutants of the HML alpha and HMRa genes or in the authentic strains having the alpha HO HMR alpha HML alpha (alpha Hp) and a HO HMRa HMLa (a Hq) genotypes. These observations suggest that the functional mutation is not caused by the direct mutation from a homothallic allele to the opposite, but by replacement of a transposable genic element produced from a homothallic locus with a region of a different homothallic locus. These observations also support the controlling-element model and the cassette model, which have been proposed to explain the mating-type differentiation by the homothallic genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Activation of mating type genes by transposition in Saccharomyces cerevisiae.

Yeast Saccharomyces cerevisiae may express an a or alpha mating type. These cells types may be interconverted as a consequence of heritable genetic alteractions at the mating type locus (MAT). According to the more general controlling element model [Oshima, U. & Takano, I. (1971) Genetics 67, 327--335] and the specific cassette model [Hicks, J., Strathern, J. & Herskowitz, I. (1977) in DNA Inse...

متن کامل

Genetic analysis of a transposable suppressor gene in Saccharomyces cerevisiae.

We have demonstrated in Saccharomyces cerevisiae the transposition of a gene coding for an efficient ochre (UAA) suppressor from a centromere-linked site on chromosome III to two new sites in the yeast genome. One site is on chromosome VI, very close to, if not allelic with, SUP11, one of eight genes coding for a tyrosine-inserting suppressor. The second site is on chromosome III, unlinked to t...

متن کامل

Evolutionary Genomics of Transposable Elements in Saccharomyces Cerevisiae Original Citation Evolutionary Genomics of Transposable Elements in Saccharomyces Cerevisiae. Introduction

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any ...

متن کامل

Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations

Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innova...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 94 4  شماره 

صفحات  -

تاریخ انتشار 1980